Future opportunities for small-system scan at RHIC

Zhenyu Chen

Stony Brook University & BNL

With inputs from Jiangyong Jia, Wei Li, ShinIchi Esumi, Shengli Huang, Roy Lacey, Constantin Loizides, Li Yi, Aihong Tang,
Prithwish Tribdey, Fuqiang Wang

2019 RHIC & AGS Annual Users' Meeting

Collectivity in small systems

What is the origin of the collectivity in small system?

A small droplet of QGP? Initial state effects (e.g. CGC)?

Collectivity in small systems

What is the origin of the collectivity in small system?

A small droplet of QGP? Initial state effects (e.g. CGC)?

Not a YES/NO question!

Initial state t ≈ 0 fm/c

Pre-equilibrium t<0.5 fm/c

Hydrodynamics $t \sim 0.5-5$ fm/c

momentum anisotropy e.g. mini-jets, glasma

Non-equilibrium transport

Collective expansion

Initial state t ≈ 0 fm/c

Pre-equilibrium t<0.5 fm/c

Hydrodynamics $t \sim 0.5-5$ fm/c

momentum anisotropy e.g. mini-jets, glasma

Non-equilibrium transport

Collective expansion **Dominant**

AuAu/PbPb

Initial state t ≈ 0 fm/c

Pre-equilibrium t<0.5 fm/c

Hydrodynamics $t \sim 0.5-5$ fm/c

momentum anisotropy e.g. mini-jets, glasma

Non-equilibrium transport

Collective expansion

pp/pA/dA/HeA

AuAu/PbPb

Contributions from different stages in small system?

Initial state $t \approx 0 \text{ fm/c}$

Pre-equilibrium t<0.5 fm/c

Hydrodynamics $t \sim 0.5-5 \text{ fm/c}$

momentum anisotropy e.g. mini-jets, glasma **Geometry-uncorrelated**

Non-equilibrium transport

Collective expansion

Geometry Response

AuAu/PbPb

pp/pA/dA/HeA

Contributions from different stages in small system?

RHIC geometry scan

Hydro captures the geometry response Hard for CGC at this moment¹

RHIC geometry scan

Hydro captures the geometry response Hard for CGC at this moment¹

Important effect of pre-equilibrium flow under investigation²

LHC heavy flavor flow

Final-state interaction model fail

LHC heavy flavor flow

Final-state interaction model fail Initial momentum anisotropy model works Initial state interactions are important in small systems

Control different contributions

Extend lever-arm with system size scan

The "gap"

The "gap"

The "gap"

Where initial-state interaction become sub-dominant?

The role of pre-equilibrium vs. hydro?

Turn-on of jet quenching and heavy-flavor "thermalization"?

Bridge the "gap"

Where initial-state interaction become sub-dominant?

The role of pre-equilibrium vs. hydro?

Turn-on of jet quenching and heavy-flavor "thermalization"?

System size scan needed!! Only RHIC can do!!

Geometry response of flow

Geometry response of v₂ not expected in initial-state picture Potential to constrain transport vs. hydro

Geometry response of flow

Different geometry response of v_2 in p(A)+A

Expected centrality bias on RAA

Better control of centrality bias at same <Npar>

Better control of centrality bias at same <Npar>

The scan -> Same parton spectra with changing system size

Best duo for the scan

Large acceptance & PID from STAR (2019+)

- iTPC ($|\eta|<1.5$, PID), EPD (2.1< $|\eta|<5.1$) and eTOF (2019+)
- Forward upgrade with pT, ET, PID (K_s, Λ, π^0) at 2.5< η <4 (2021+)

Best duo for the scan

Large acceptance & PID from STAR (2019+)

- iTPC (|η|<1.5, PID), EPD (2.1<|η|<5.1) and eTOF (2019+)
- Forward upgrade with pT, ET, PID (K_s, Λ, π^0) at 2.5< η <4 (2021+)

Hard/Rare probes from sPHENIX (2023+)

- 15kHz DAQ
- EM+HCal

Best duo for the scan

Large acceptance & PID from STAR (2019+)

- iTPC ($|\eta|<1.5$, PID), EPD (2.1< $|\eta|<5.1$) and eTOF (2019+)
- Forward upgrade with pT, ET, PID (K_s, Λ, π^0) at 2.5< η <4 (2021+)

Hard/Rare probes from sPHENIX (2023+)

- 15kHz DAQ
- EM+HCal

Ready for bulk correlation studies today!!

Key improvements wrt previous scan

Longitudinal dynamics and their impact on the results

Key improvements wrt previous scan

Longitudinal dynamics and their impact on the results

$$R(\psi_3) = \sqrt{\frac{\left\langle \cos 3(\psi_3^{BBCS} - \psi_3^{FVTXS}) \right\rangle \left\langle \cos 3(\psi_3^{BBCS} - \psi_3^{CNT}) \right\rangle}{\left\langle \cos 3(\psi_3^{FVTXS} - \psi_3^{CNT}) \right\rangle}}$$

Significant decorrelation effects not considered

Could be 30% effects assuming scaling by beam rapidity

Key improvements wrt previous scan

Longitudinal dynamics and their impact on the results Comprehensive studies of multi-particle correlation

Only available in d+Au and hard to interpret

- Non-trivial energy dependence of v₂{2} and v₂{4}
- No pT information for the results

Synergy with LHC

Proposed LHC run schedule

Year	Systems, $\sqrt{s_{\rm NN}}$	Time	L _{int} Arxiv.1812.06772
2021	Pb-Pb 5.5 TeV	3 weeks	$2.3~\mathrm{nb}^{-1}$
	pp 5.5 TeV	1 week	3 pb^{-1} (ALICE), 300 pb^{-1} (ATLAS, CMS), 25 pb^{-1} (LHCb)
2022	Pb-Pb 5.5 TeV	5 weeks	$3.9~\mathrm{nb}^{-1}$
	O–O, p–O	1 week	$500~\mu { m b}^{-1} \ { m and} \ 200~\mu { m b}^{-1}$
2023	p–Pb 8.8 TeV	3 weeks	0.6 pb^{-1} (ATLAS, CMS), 0.3 pb^{-1} (ALICE, LHCb)
	pp 8.8 TeV	few days	1.5 pb^{-1} (ALICE), 100 pb^{-1} (ATLAS, CMS, LHCb)
2027	Pb-Pb 5.5 TeV	5 weeks	$3.8~\mathrm{nb}^{-1}$
	pp 5.5 TeV	1 week	3 pb^{-1} (ALICE), 300 pb^{-1} (ATLAS, CMS), 25 pb^{-1} (LHCb)
2028	p-Pb 8.8 TeV	3 weeks	0.6 pb^{-1} (ATLAS, CMS), 0.3 pb^{-1} (ALICE, LHCb)
	pp 8.8 TeV	few days	1.5 pb^{-1} (ALICE), 100 pb^{-1} (ATLAS, CMS, LHCb)
2029	Pb-Pb 5.5 TeV	4 weeks	$3 \mathrm{nb}^{-1}$
Run-5	Intermediate AA	11 weeks	e.g Ar-Ar 3-9 pb ⁻¹ (optimal species to be defined)
	pp reference	1 week	

O+O run at RHIC after BES II is timely for

First comparison between RHIC & LHC with identical Glauber geometry but different sub-nucleon fluctuation (Qs) for a factor of 10 difference in energy

Arxiv.1904.10415

No energy dependence of v₂ in pA vs AA

No energy dependence of v_2 in pA vs AA Different energy dependence of v_3 in pA vs AA?

No energy dependence of v_2 in pA vs AA Different energy dependence of v_3 in pA vs AA?

No energy dependence of v_2 in pA vs AA Different energy dependence of v_3 in pA vs AA? O+O run at RHIC & LHC can probe the "turn-on"

Full proposal for scan (developing)

Short run of O+O before LHC (2020/2021)

- Synergy with LHC
- Motivate & strengthen future small system scan

Potential trigger commissioning in cold QCD (2022-23)

- Low and high multiplicity triggers at low pile-up
- First "ridge" in 500 GeV pp?

Scan of small asymmetric & symmetric systems (2023+)

- Full benefits from STAR forward upgrade and sPHENIX
- Find the TRUTH of collectivity in small systems

STAR proposal for O+O in 2020/2021

The STAR Beam Use Request for Run-20 and Run-21 $\,$

The STAR Collaboration

May 15, 2019

STAR proposal for O+O in 2020/2021

_	_	_	_
$\boldsymbol{\cap}$	A	1	Λ
	u		u
_	\mathbf{u}	_	$\mathbf{\mathbf{\mathcal{U}}}$

$\operatorname{Single-Beam}$	$\sqrt{s_{NN}}$	Run Time	Species	Events	Priority	Sequence
Energy (GeV/n)	(GeV)			(MinBias)		
5.75	11.5	9.5 weeks	Au+Au	230M	1	1
4.55	9.1	9.5 weeks	Au+Au	160M	1	3
19.5	6.2 (FXT)	2 days	Au+Au	100M	2	5
13.5	5.2 (FXT)	$2 \mathrm{\ days}$	Au+Au	100M	2	6
5.75	3.5 (FXT)	2 days	Au+Au	100M	2	2
4.55	3.2 (FXT)	2 days	Au+Au	100M	2	4
3.85	3.0 (FXT)	2 days	Au+Au	100M	2	7
100	200	1 week^2	О+О	400M 200M (central)	3	8

(0-5%)

2021

	Single-Beam	$\sqrt{s_{NN}}$ (GeV)	Run Time	Species	Events	Priority	Sequence
	Energy (GeV/n)	,			(MinBias)		
Ì	3.85	7.7	12 weeks	Au+Au	100M	1	1
	8.35	16.7	5 weeks	Au+Au	250M	2	2
,	100	200	1 week^4	О+О	400M $200M$ (central)	2	3

(0-5%)

Assuming 20kHz collision rate (low pile-up) 2kHz STAR DAQ rate, 12hr/day Central trigger based on TPC ($|\eta|$ <1.5) and/or EPD (2< $|\eta|$ <5)

Physics potential

Decent measurement of PID flow Decent measurement of multi-particle correlation More to come...

Summary

Further understanding of the collectivity in small systems requires disentangling contribution from

- Initial-state interaction
- Non-equilibrium transport
- Fluid dynamics

A scan of small (A)symmetric systems at RHIC will provide unique inputs

- Shape, size, density dependence of collectivity
- Medium property via turn-on of parton-medium interaction STAR is proposing a short O+O run in 2020/2021 to motivate & strengthen future small system scan

Summary

Further understanding of the collectivity in small systems requires disentangling contribution from

- Initial-state interaction
- Non-equilibrium transport
- Fluid dynamics

A scan of small (A)symmetric systems at RHIC will provide unique inputs

- Shape, size, density dependence of collectivity
- Medium property via turn-on of parton-medium interaction STAR is proposing a short O+O run in 2020/2021 to motivate & strengthen future small system scan

You are welcome to join the effort!!

Back up

Survivor of initial-state flow

M. Nie, L. Yi, J. Jia, G. Ma in preparation

Survivor of initial-state flow

Symmetric vs Asymmetric

Asymmetric system	pAu	dAu	He4Au
<n<sub>part></n<sub>	5.8	8.8	13.2
Symmetric system	¹² C+ ¹² C	¹⁶ O+ ¹⁶ O	²⁷ Al+ ²⁷ Al
<n<sub>part></n<sub>	7.2	9.5	14

- Asymmetric: subnucleon fluctuations more important.
- Symmetric: nucleon fluctuations more important.
 - Less centrality bias & better selection of geometry (N_{part} , $\epsilon_n \& N_{coll}$)

RHIC vs LHC energy-scan

Similar Glauber geometry but different particle production

Glauber + fluctuations per nucleon

Expect larger multiplicity/centrality smearing @LHC

RHIC vs LHC energy-scan Similar Glauber geometry but different particle production

Glauber + fluctuations per nucleon

Expect larger multiplicity/centrality smearing @LHC

Largely geometry response

N_{ch} smeared by subnucleon/multiplicity fluctuation at larger √s

Non-flow systematics

- STAR: Subtraction significantly reduces non-flow, but may lead to oversubtraction at high p_T (1902.11290)
- PHENIX: pAu non-flow could still be large.
 - Non-flow is smaller than STAR w/o subtraction, but not shown whether it is smaller than STAR w/ subtraction.
 - Closure test need to be done for PHENIX kinematics for a fair conclusion.

S. Lim, Q. Hu, R. Belmont, K.Hill, J.Nagle, D. Perepelitsa

